Accepted Manuscript Title: A novel low-fired, temperature-stable, and low-cost (1-x)BaCu(B₂O₅)-xTiO₂ microwave dielectric ceramic Authors: Yong-jun Gu, Li-wei Lei, Jin-liang Huang, Xing-hua Yang, Qian Li, Li-hua Li, Xin-li Li, Bok-hee Kim PII: S0955-2219(18)30694-0 DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.11.028 Reference: JECS 12180 To appear in: Journal of the European Ceramic Society Received date: 14 June 2018 Revised date: 15 November 2018 Accepted date: 16 November 2018 Please cite this article as: Gu Y-jun, Lei L-wei, Huang J-liang, Yang X-hua, Li Q, Li L-hua, Li X-li, Kim B-hee, A novel low-fired, temperature-stable, and low-cost $(1-x)BaCu(B_2O_5)-xTiO_2$ microwave dielectric ceramic, *Journal of the European Ceramic Society* (2018), https://doi.org/10.1016/j.jeurceramsoc.2018.11.028 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ceramic Yong-jun Gua,b,c, Li-wei Leib, Jin-liang Huangb,c, Xing-hua Yanga, Qian Lic, Li-hua Lic, Xin-li Lib, Bok-hee Kimc,d a Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, China b Collaborative Innovation Center of Nonferrous Metals, Henan Province, Luoyang 471023, China c School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China d Department of Electronic Materials Engineering, Chonbuk National University, Korea **Abstract:** BaCu(B₂O₅) is a typical microwave dielectric ceramic (MDC) with a low sintering temperature, but it exhibits a large negative temperature coefficient of resonant-frequency (τ_f) which makes it difficult to use in wireless communications. We employ TiO₂ to improve its temperature-stability of resonant-frequency, and reveal the effects of TiO₂ on the densification and the microwave dielectric properties of BaCu(B₂O₅). Here we show that BaCu(B₂O₅) can be well-sintered at 825°C with proper TiO₂ additions; we find that the TiO₂ grains homogeneously distribute in the boundaries of BaCu(B₂O₅) grains, resulting in the τ_f compensation of BaCu(B₂O₅). Enhanced temperature-stability of resonant-frequency can be achieved by increasing the content of TiO₂ properly. A novel temperature-stable (1-x)BaCu(B₂O₅)-xTiO₂ (x=0.20) MDC (τ_f =-0.8±3.0 ppm/°C, ε_r = 8.8±0.36, Q×f = 28612±1170 GHz) is obtained using some low-cost raw materials. Our results provide the underlying insights needed to guide the design of temperature- stable MDCs for wireless communication applications. **Keywords**: microwave dielectric ceramics; BaCu(B₂O₅); temperature-stable; cost-saving 1. Introduction High performance microwave dielectric ceramics have attracted wide attentions with the rapid development of wireless communications [1-3]. The low temperature co-fired ceramic (LTCC) technology is widely used to fulfill the requirements of miniaturization, integration and multi-function. This technology requires the microwave dielectric ceramics to have low sintering temperatures, near-zero temperature coefficients of resonant frequency and high quality factors [4]. Low-cost and sustainable fabrications have also become the key focuses because of the recent energy and environmental concerns. Over the past decade, BaCu(B₂O₅) has been commonly used as an effective sintering aids, due to its low melting temperature (\sim 850°C) and the good wettability, to lower the sintering temperatures of dielectric ceramics [5-11]. Meanwhile, BaCu(B₂O₅) can be easily fabricated using some simple raw materials: Ba(OH)₂ 8H₂O, CuO and H₃BO₃. Furthermore, BaCu(B₂O₅) exhibits a low relative permittivity (7.4) and a high quality factor (50000GHz), which makes it capable to be a potential candidate for microwave applications [5]. However, BaCu(B₂O₅) has a large negative τ_f value (-32ppm/°C), precluding its use for the practical purposes. Fortunately, one can compensate for the large τ_f (positive or negative) by adding the compound with a opposite τ_f value. It's known that TiO₂ exhibits a large positive τ_f value (+460 ppm/°C) [12] and has been successfully used to improve the temperature stabilities of resonant frequency of many microwave dielectric ceramics [13-18]. Nevertheless, there are no reports about adjusting the τ_f value of BaCu(B₂O₅) with TiO₂ additions as far as the literature is concerned. Therefore, we attempt to present a novel temperature-stable and low-cost microwave dielectric ceramic based on the (1-x)BaCu(B₂O₅)-xTiO₂ system in this study. The phase composition, microstructure and microwave dielectric properties of (1-x)BaCu(B₂O₅)-xTiO₂ (0.10≤x≤0.30) ceramics were also investigated as a function of TiO2 content. ## 2. Experimental procedure All the raw materials, including TiO₂ (98%), Ba(OH)₂8H₂O (99%), CuO (99%) and H₃BO₃ (99.5%), were obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). The BaCu(B₂O₅) powder was synthesized through a conventional solid-state route. Reagent-grade Ba(OH)₂8H₂O, CuO, and H₃BO₃ were weighed in stoichiometry, then ball milled with some ZrO₂ balls in alcohol for 6h, and subsequently calcined at 800°C for 3h in air. The as-synthesized BaCu(B₂O₅) was crushed, ground, and sieved by a 200 mesh. Then, the BaCu(B₂O₅) powders were mixed with some reagent-grade TiO₂ through the ball-milling for 6h according to the formula as follows: (1-x)BaCu(B₂O₅)-xTiO₂ (x is equal to 0.10, 0.15, 0.20, 0.25, and 0.30, respectively). The final mixed powders were pressed into the cylinders with 15 mm in diameter and 7 mm in thickness with 5wt% PVA functioning as the binder. The samples were sintered at 800-850°C in air for 2h after being burnt off at 600°C for 1h to remove the binder. The bulk densities of the sintered ceramic samples were measured through the Archimedean method and distilled water was used as the medium. The nominal theoretical densities (p_T) of the $(1-x)BaCu(B_2O_5)-xTiO_2$ multiphase ceramics were calculated using the following formula: $\rho_T = \frac{\sum m_i}{\sum V_i} = \frac{\sum m_i}{\sum m_i/\rho_i} = \frac{m_{BCB}+m_{TiO_2}}{m_{BCB}/\rho_{BCB}+m_{TiO_2}/\rho_{TiO_2}}$, where m_i , v_i and ρ_i refer to the mass, volume, and theoretical density of the component i, respectively. The phase compositions of the samples were identified according to the X-ray powder diffraction patterns (XRD, Bruke D8 ADVANCE, Germany, Cu K α_1 , 40 kV and 40 mA). The sintered samples were crushed into powders prior to the examination. The microstructures of the sintered samples were characterized by a scanning electron microscopy (SEM, Jeol, JSM5610LV, Japan). Before visualization, the surfaces of the samples were coated with a thin layer of gold. The quality-factor $(Q \times f)$ values and the relative dielectric constants (ε_i) at microwave frequency were determined by a network analyzer (Agilent N5230C, USA) at room temperature according to the post-resonant method [19]. The temperature coefficients of resonant frequency (τ_i) were also measured with the same method at the temperatures ranging from 25°C to 85°C, and calculated by the equation $(\tau_f = \frac{f_{BC}-f_{ZS}}{f_{ZS}\times(85-25)} = \frac{f_{BC}-f_{ZS}}{f_{ZS}\times60} \times 10^6 (ppm/^\circ\text{C}))$, where f_{SS} and f_{ZS} represent the resonant frequencies at 85°C and 25°C, respectively. The Raman signals were collected at room temperature and detected by a DILOR XY-800 triple-grating Raman spectrometer equipped with a liquid-nitrogen-cooled CCD. The 10 mW output of the 514.5nm line of Ar $^+$ ion laser was used as the excitation source. The obtained Raman spectra exhibited a resolution approximately of 0.5 cm $^+$ 1. ### 3. Results and discussion Figure 1 Typical XRD patterns of $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramics sintered at 825°C for 2h. Figure 1 illustrates the XRD patterns of (1-x)BaCu(B₂O₅)–xTiO₂ ceramics sintered at 825°C for 2h. It is detected no phase except BaCu(B₂O₅) (JCPDS #88-0386) for x=0, indicating that all the raw materials react completely to form BaCu(B₂O₅) phase. BaCu(B₂O₅) performs a monoclinic structure and belongs to the space group C2(5) and Z=2 [20]. The lattice parameters are a=6.485Å, b=9.165Å, and c=3.971Å. The TiO₂ phase (JCPDS # 21-1276) coexisting with BaCu(B₂O₅) is detected from x=0.15 to 0.30, suggesting that they behave as a mixture. However, no TiO₂ phase is detected when x is equal to 0.10 probably due to the XRD detection limit. The relative volume fraction of TiO₂ phase can be defined as the ratio of the most-intense XRD peak height of TiO₂ to the sum of the most-intense peak heights of TiO₂ and BaCu(B₂O₅). The as-calculated proportions of TiO₂ phase are 0.042±6, 0.071±3, 0.092±8, and 0.108±8 for x=0.15, 0.20, 0.25, and 0.30, respectively. This result is essentially in agreement with the volume fractions estimated by the equation[21] ($v_i = \frac{x_i M_i I/\rho_i}{\sum x_i M_i I/\rho_i}$ ($i = TiO_2$, BCB), where x_i , ρ_i and M_i refer to the mole fraction, density and relative molecular mass of component i, respectively). Figure 2 Relative densities of (1-x)BaCu(B₂O₅)-xTiO₂ ceramic samples sintered at 800-850°C for 2h. Figure 2 exhibits the relative densities of (1-x)BaCu(B₂O₅)-xTiO₂ ceramic samples sintered at 800-850°C. The variations of the relative densities are similar for all the samples sintered at different temperatures. It means, the relative density increases with the increment of TiO₂ content, reaches the saturations and then decreases. This result indicates that a proper amount of TiO₂ improves the densification of (1-x)BaCu(B₂O₅)-xTiO₂ ceramics and (1-x)BaCu(B₂O₅)-xTiO₂ (x is equal to 0~0.25) can be well sintered at 825°C for 2h. Figure 3 Typical SEM images of the polished and thermal etched surface morphology of the (1-x)BaCu(B₂O₅)-xTiO₂ ceramic samples sintered at 825°C for 2h. (a) x=0.20, (b) x=0.30, and (c) mean grain sizes of BaCu(B₂O₅) phase. The polished and thermal etched surface morphology of the $(1-x)BaCu(B_2O_5)$ – $xTiO_2$ ceramic samples sintered at 825°C for 2h was characterized. All the $(1-x)BaCu(B_2O_5)$ - $xTiO_2$ (x=0.10-0.25) ceramic samples show dense microstructures with the mean grain size (MGZ) of BaCu(B₂O₅) phase about 5.9±2.0 µm, much larger than the MGZ (4µm) of pure BaCu(B₂O₅) sintered at 810°C [5]. This results indicates that $(1-x)BaCu(B_2O_5)$ – $xTiO_2$ (x=0.10-0.25) can be well sintered at 825°C. The typical SEM images (x is equal to 0. 20, 0.30) are depicted in Figure 3. Two kinds of randomly-distributed grain shapes are observed in all the as-sintered ceramic samples, as shown in Figure 3(a) as spot B1, B2, T1, and T2, respectively. The darker polygonal grains (B1, B2), with Ba and Cu ions detected at a ratio of approximately 1:1 and no Ti ions, are identified as the BaCu(B₂O₅) phase by the EDS analysis and the XRD results (Figure 1), while the rod-shape grains (T1, T2) are identified as the TiO₂ phase. Unfortunately, some big pores occur in the 0.70BaCu(B₂O₅)–0.30TiO₂ sample (Figure3(b)), indicating that too much TiO₂ is disadvantageous to the densification of (1-x)BaCu(B₂O₅)–xTiO₂ ceramics at 825°C. The MGZs of BaCu(B₂O₅) phase in the as-sintered (1-x)BaCu(B₂O₅)–xTiO₂ ceramic samples were also measured by the tool of Image Pro 6 software (Figure 3(c)). The MGZs of BaCu(B₂O₅) phase in the sintered samples firstly increase when the TiO₂ content increases from 0.10 to 0.15, and saturate (6.5±2.2µm) at x is equal to 0.20. This result means that a proper amount of TiO₂ is beneficial to the grain growth of BaCu(B₂O₅) phase. Figure 4 depicts the τ_f values of the (1-x)BaCu(B₂O₅)–xTiO₂ ceramic samples sintered at 825°C for 2h. The τ_f value measured shifts from -32 ± 3.8 ppm/°C to 29.4 ± 3.0 ppm/°C as the TiO₂ content (x) increases from 0 to 0.30. For a multiphase ceramic composite with random distributions of the components, the τ_f can be formulated by the common equation ($\tau_f = \sum v_i \tau_{fi} = (1-v)\tau_{fBCB} + v\tau_{fTiO2}$), where τ_f and v_i refer to the τ_f value and the volume fraction of component i. The red dash line in Figure 4 presents the curve of τ_f values simulated by the equation mentioned above. The τ_f values measured are similar to the general calculated ones, suggesting that TiO₂ distributes randomly in the (1-x)BaCu(B₂O₅)–xTiO₂ ceramics as shown in Figure 3. Furthermore, a near-zero τ_f (-0.8±3.0ppm/°C) is obtained in the 0.80BaCu(B₂O₅)–0.20TiO₂ (x is equal to 0.20) ceramics sintered at 825°C for 2h. Figure 4 Temperature coefficients of resonant frequency (τ_f) of the $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramic samples sintered at 825°C for 2h. Figure 5 illustrates the relative permittivities (ε_r) and Q×f of the (1-x) BaCu(B₂O₅)-xTiO₂ ceramic samples sintered at 825°C for 2h as a function of TiO₂ content (x). The ε_r gradually increases from 7.4±0.30 to 12.6±0.32 when x increases from 0 to 0.30. For a multiphase ceramic, the ε_r value depends on the phase composition, relative density and permittivity of the component. The increment of ε_r value in this research might attribute to the high permittivity of TiO₂ (104) [22]. The magenta dash line in Figure 5 presents the curve simulated by the logarithmic rule model equation for diphase composite ceramics with randomly distributed components. The experimental ε_r data are close to the relative permittivities simulated when x is equal to 0.10, 0.15 and 0.20, respectively. Meanwhile, a deviation from the simulated curve occurs when x is higher than 0.20. Figure 5 Relative permittivities (ε_r) and Q×f of (1–x)BaCu(B₂O₅)–xTiO₂ ceramic samples sintered at 825°C for 2h. It was reported that TiO_2 and $BaCu(B_2O_5)$ exhibited high $Q \times f$ values: 44000 GHz [22] and 50000 GHz [5], respectively. The $Q \times f$ value decreases monotonously when the TiO_2 content (x) increases from 0 to 0.30. The maximum $Q \times f$ is $50000 \pm 1050 GHz$ (x=0) and minimum $19875 \pm 1860 GHz$ (x=0.30). Although no TiO_2 phase is detected (Figure 1) in the sintered $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramic samples when x is equal to 0.1, a dramatic decrease of the $Q \times f$ value from 50000 ± 1050 GHz to 33056 ± 1680 GHz occurs, as clearly shown in Figure 5. The $Q \times f$ value decreases monotonously with the further increment of TiO_2 content, and a further rapid decrease of $Q \times f$ value occurs when x is equal to 0.30. Generally, the $Q \times f$ value is determined by both intrinsic factors, like phase compositions and absorptions of phonon oscillation, and extrinsic factors like porosity, impurity, defect, grain boundary, etc [19]. $BaCu(B_2O_5)$ phase in the as-sintered $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramic samples coexists with the randomly distributed TiO_2 phase (Figure 3). The ratio of TiO_2 to $BaCu(B_2O_5)$ and the corresponding phase boundaries increase when TiO_2 content (x) increases. This inevitably leads to the changes of $Q \times f$ value. In addition, the porosity also plays an important role. The Raman spectra of the corresponding ceramic samples are also carried out to verify that the intrinsic properties such as vibration modes are unchanged or not. It was reported that the Raman peak positions is a function of the particular symmetry mode [23, 24]. The Raman peak shifts provide a context for vibration modes. [25]. The Raman spectra of $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramic samples contain both the bands at 143 (E_g), 196.5 (E_g), 394 (B_{1g}), 512 (A_{1g}), and 635.5 cm⁻¹ (E_g) from the TiO₂ phase[26] and the bands at 107.5 (A_g), 176.5 (B_g), 263(A_g), 329(A_g), 483, 637.5 (B_g) and 671.5 (A_g) cm⁻¹ from the BaCu(B₂O₅) phase[27-28]. Furthermore, with the increment of the TiO₂ phase content, the intensities of the bands identified from TiO₂ phase increase, but no obvious shifts of the Raman peak position occurs. This result indicates that the vibration modes of $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramic samples are unchanged. According to the XRD results (Figure 1) and Raman data (Figure 6), we suggest that the intrinsic factors of all the $(1-x)BaCu(B_2O_5)-xTiO_2$ ceramic samples are similar, and that the variation of Q×f values mainly attributes to the extrinsic factors such as boundaries and porosity. In summary, a temperature-stable BaCu(B₂O₅)-TiO₂ microwave dielectric ceramic with excellent dielectric properties ($\tau_f = -0.8 \pm 3.0 \text{ ppm}/^{\circ}C$, ε_i =8.8±0.36, Q×f=28612±1170 GHz) can be obtained when x is equal to 0.20. Figure 6 The Raman spectra of (1-x)BaCu(B_2O_5)-xTiO₂ ceramic samples sintered at 825°C for 2h. Low-cost and sustainable fabrications have been becoming the key focuses due to recent energy and environmental concerns. The raw materials used in this research such as TiO₂, Ba(OH)₂8H₂O and H₃BO₃ were simple and cost-saving. Figure 7 illustrates the comparison of dielectric properties and cost of some typical microwave dielectric ceramics (MDCs) sintered at 825 °C. Only the MDCs sintered at 825 °C were chose to eliminate the cost differences caused by processes such as sintering. The prices of materials were also obtained only from the Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China) to eliminate price differences of the same materials from different reagent companies. It can be clearly seen that the $0.80BaCu(B_2O_5)-0.20TiO_2$ ceramic exhibits the lowest price. Considering that a near zero τ_f was required, the $0.80BaCu(B_2O_5)-xTiO_2$ ceramic is expected to be a promising and competitive candidate for LTCC applications. Figure 7 The Comparison of dielectric properties and cost of several typical microwave dielectric ceramics sintered at 825°C. LZP (after Ref. [29]); BCV-ZBS (after Ref. [30]); BS (after Ref. [31]); BS-BM (after Ref. [32]); LMT-M-LF (after Ref. [33]); CNLW (after Ref. [34]); ZS-S-B (after Ref. [35]); BCB-T (represents the as-fabricated 0.80BaCu(B₂O₅)-0.20TiO₂, marked by a green ellipse). #### 4. Conclusions A novel temperature-stable (1-x)Ba (B_2O_5) -xTiO₂ ceramics was fabricated by a solid state reaction method using some low-cost raw materials: TiO₂, Ba $(OH)_2$ 8H₂O, CuO and H₃BO₃. The monoclinic BaCu (B_2O_5) phase coexists with TiO₂ phase. As the TiO₂ content (x) increases, the ε_r value rises up from 7.4 ± 0.30 to 12.6 ± 0.32 and the τ_f monotonously shifts from negative (-32 ± 3.8) ppm/°C) to positive (29.4 \pm 3.0 ppm/°C). Meanwhile, the Q×f decreases from 50000 \pm 1050 GHz to 19875 \pm 1860 GHz. A temperature-stable (τ_f =-0.8 \pm 3.0 ppm/°C) 0.80BaCu(B₂O₅)-0.20TiO₂ ceramic with ϵ_r =8.8 \pm 0.36 and Q×f=28612 \pm 1170 GHz, was obtained at 825°C. Furthermore, the 0.80BaCu(B₂O₅)-0.20TiO₂ ceramic could be a promising and competitive candidate for LTCC applications. #### Acknowledgements This work was supported by the Development Funds of Henan University of Science & Technology for High Level Scientific Research Project (2015GJB005) and Natural Science Foundation of Henan Province (162300410088). The authors also acknowledged the kind help in the Raman characterization by doctor Yang and the financial support from Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University (ZYGTCXW2018-02). #### References - [1] J.J. Bian, Q. Yu, J.J. He, Tape casting and characterization of Li_{2.08}TiO₃-LiF glass free LTCC for microwave applications, J. Eur. Ceram. Soc. 37(2) (2017) 647-653. - [2] Z.X. Fang, B. Tang, F. Si, S.R. Zhang, Low temperature sintering of high permittivity Ca-Li-Nd-Ti microwave dielectric ceramics with BaCu(B₂O₅) additives, J. Alloy. Compd. 693 (2017) 843-852. - [3] I.J. Induja, K.P. Surendran, M.R. Varma, M.T. Sebastian, Low kappa, low loss alumina-glass composite with low CTE for LTCC microelectronic applications, Ceram. Int. 43(1) (2017) 736-740. - [4] Z. Wang, R. Freer, Low firing temperature zinc molybdate ceramics for dielectric and insulation applications, J. Eur. Ceram. Soc. 35(11) (2015) 3033-3042. - [5] M.H. Kim, J.B. Lim, J.C. Kim, S. Nahm, J.H. Paik, J.H. Kim, K.S. Park, Synthesis of BaCu(B₂O₅) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn_{1/3}Nb_{2/3})O₃ ceramics, J. Am. Ceram. Soc. 89(10) (2006) 3124-3128. - [6] J.B. Lim, K.H. Cho, S. Nahm, J.H. Paik, J.H. Kim, Effect of BaCu(B₂O₅) on the sintering temperature and microwave dielectric properties of BaO-Ln₂O₃-TiO₂ (Ln=Sm, Nd) ceramics, Mater. Res. Bull. 41(10) (2006) 1868-1874. - [7] H. Zhou, X. Liu, X. Chen, L. Fang, H. Wang, Microwave dielectric properties and compatibility with silver of low-fired Ba₂Ti₃Nb₄O₁₈ ceramics with BaCu(B₂O₅) addition, J. Mater. Sci. 23(1) (2012) 238-242. - [8] G.H. Chen, C.L. Yuan, C.R. Zhou, Y. Yang, Low-firing high permittivity Ca_{0.6}Sm_{0.8/3}TiO₃-(Li_{0.5}Nd_{0.5})TiO₃ ceramics with BaCu(B₂O₅) addition, Ceram. Int. 39(8) (2013) 9763-9766. - [9] B. Tang, X. Guo, S.Q. Yu, Z.X. Fang, S.R. Zhang, The shrinking process and microwave dielectric properties of BaCu(B₂O₅)-added 0.85BaTi₄O₉-0.15BaZn₂Ti₄O₁₁ ceramics, Mater. Res. Bull. 66 (2015) 163-168. - [10] J. Li, B. Yao, D. Xu, Z. Huang, Z. Wang, X. Wu, C. Fan, Low temperature sintering and microwave dielectric properties of 0.4Nd(Zn_{0.5}Ti_{0.5})O₃-0.6Ca_{0.61}Nd_{0.26}TiO₃ ceramics with BaCu(B₂O₅) additive, J. Alloy. Compd. 663 (2016) 494-500. - [11] H. Zhou, X. Chen, L. Fang, D. Chu, H. Wang, A new low-loss microwave dielectric ceramic for low temperature cofired ceramic applications, J. Mater. Res. 25(7) (2010) 1235-1238. - [12] X.S. Lyu, L.X. Li, S. Zhang, H. Sun, B.W. Zhang, J.T. Li, M.-K. Du, Crystal structure and microwave dielectric properties of - novel (1-x)ZnZrNb₂O₈-xTiO₂ ceramics, Mater. Lett. 171 (2016) 129-132. - [13] C. Hu, Y. Liu, P. Liu, W. Zhang, J. Zhu, Microwave dielectric properties of (1-x)SiO₂-xTiO₂ composite ceramics derived from core-shell structured microspheres, Mater. Res. Bull. 53 (2014) 54-57. - [14] F. Li, P. Liu, P. Ruan, H. Zhang, B. Guo, X. Zhao, Microwave dielectric properties of (1-x)SiO₂-xTiO₂ ceramics, Ceram. Int. 41 (2015) S582-S587. - [15] U. Dosler, M.M. Krzmanc, D. Suvorov, Phase evolution and microwave dielectric properties of MgO-B₂O₃-SiO₂-based glass-ceramics, Ceram. Int. 38(2) (2012) 1019-1025. - [16] S. Wu, K. Song, P. Liu, H. Lin, F. Zhang, P. Zheng, H. Qin, Effect of TiO₂ doping on the structure and microwave dielectric properties of cordierite ceramics, J. Am. Ceram. Soc. 98(6) (2015) 1842-1847. - [17] D. Thomas, M.T. Sebastian, Temperature-compensated LiMgPO₄: a new glass-free low-temperature cofired ceramic, J. Am. Ceram. Soc. 93(11) (2010) 3828-3831. - [18] W. Hu, H. Liu, H. Hao, Z. Yao, M. Cao, Z. Wang, Z. Song, Influence of TiO₂ additive on the microwave dielectric properties of α-CaSiO₃–Al₂O₃ ceramics, Ceram. Int. 41 (2015) S510-S514. - [19] Y.J. Gu, C. Li, J.L. Huang, Q. Li, L.H. Li, X.L. Li, Effect of BaCu(B₂O₅) on the sintering and microwave dielectric properties of Ca_{0.4}Li_{0.3}Sm_{0.05}Nd_{0.25}TiO₃ ceramics, J. Eur. Ceram. Soc. 37(15) (2017) 4673-4679. - [20] R.W. Smith, D.A. Keszler, Synthesis, structure, and properties of the noncentrosymmetric pyroborate BaCuB₂O₅, J. Solid State Chem. 129(2) (1997) 184-188. - [21] H. Zheng, S. Yu, L. Li, X. Lyu, Z. Sun, S. Chen, Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1–x)MgMoO₄–xTiO₂ composite ceramics, J. Eur. Ceram. Soc. 37(15) (2017) 4661-4665. - [22] M. Masaki, Y. Takashi, I. Takuro, Dielectric characteristics of several complex oxide ceramics at microwave frequencies, Jpn. J. Appl. Phys. 26(S2) (1987) 76-79. - [23] L. Mahoney, R.T. Koodali, Versatility of evaporation-induced self-assembly (EISA) method for preparation of mesoporous TiO₂ for energy and environmental applications, Mater. 7(4) (2014) 2697-2746. - [24] A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry, J. Appl. Phys. 98(7) (2005) 074305:1–074305:9. - [25] M.Y. Chen, C.Y. Chiu, C.T. Chia, J.F. Lee, J.J. Bian, Raman spectra and extended X-ray absorption fine structure characterization of La_{(2-x)/3}Na_xTiO₃ and Nd_{(2-x)/3}Li_xTiO₃ microwave ceramics, J. Euro. Ceram. Soc. 30(2) (2010) 335-339. - [26] E.S. Araújo, J. Libardi, P.M. Faia, H.P. de Oliveira, Hybrid ZnO/TiO₂ loaded in electrospun polymeric fibers as photocatalyst, J. Chem. 2015 (5) 476472:1-476472:10. - [27] B.P. Dwivedi, M.H. Rahman, Y. Kumar, B.N. Khanna, Raman scattering study of lithium borate glasses, J. Phys. Chem. Solids 54(5) (1993) 621-628. - [28] B. Zhou, H. Shi, X.D. Zhang, Q. Su, Z.Y. Jiang, The simulated vibrational spectra of HfO₂ polymorphs, J. Phys. D: Appl. Phys. 47(11) (2014) 115502:1-115502:9. - [29] D. Thomas, M.T. Sebastian, Effect of Zn²⁺ substitution on the microwave dielectric properties of LiMgPO₄ and the development of a new temperature stable glass free LTCC, J. Euro. Ceram. Soc. 32(10) (2012) 2359-2364. - [30] P.S. Anjana, Investigations on ceria based dielectric ceramic materials for wireless communication. PhD Thesis. Cochin University of Science and Technology, India, (2008) 183-191. - [31] B.J. Jeong, M.R. Joung, S.H. Kweon, J.S. Kim, S. Nahm, J.W. Choi, S.J. Hwang, Microstructures and microwave dielectric properties of Bi₂O₃-deficient Bi₁₂SiO₂₀ ceramics, J. Am. Ceram. Soc. 96(7) (2013) 2225-2229. - [32] S.F. Wang, Y.F. Hsu, Y.R. Wang, Y.H. Huang, Effects of Bi₂Mo₂O₉ addition on the sintering characteristics and microwave dielectric properties of BiSbO₄ ceramics, J. Euro. Ceram. Soc. 31(15) (2011) 2975-2980. - [33] P. Zhang, J. Liu, Y. Zhao, H. Du, X. Wang, Effects of MgO–LiF addition on the sintering behavior and microwave dielectric properties of Li₂MgTi₃O₈ ceramics, Mater. Lett. 162 (2016) 173-175. - [34] J.J. Bian, J.Y. Wu, Designing of glass-free LTCC microwave ceramic- $Ca_{1-x}(Li_{0.5}Nd_{0.5})_xWO_4$ by crystal chemistry, J. Am. Ceram. Soc. 95(1) (2012) 318-323. - [35] M. Ando, H. Ohsato, D. Igimi, Y. Higashida, A. Kan, S. Suzuki, Y. Yasufuku, I. Kagomiya, Low-temperature sintering of silicaboric acid-doped willemite and microwave dielectric properties, Jpn. J. Appl. Phys. 54(10S) (2015) 10NE03:1-10NE03:6.